NeuroGraph
Release 2.1.0

Anwar Said

Feb 28, 2024

8

9

Mental States
Cognitive Traits
Installation

Introduction by Example

4.1 Loading Benchmark datasets

Preprocessing Examples

Preprocessing Human Connectome Project (HCP1200) Dataset

6.1 Download and preprocess static datasets
6.2 Download and preprocess dynamic datasets

Load Benchmark Datasets
NeuroGraph Preprocessing Functionalities

NeuroGraph Utilities

10 Indices and tables

Python Module Index

Index

NEUROGRAPH:

11

13

................. 13
................. 14

17

19

23

25

27

29

NeuroGraph, Release 2.1.0

NeuroGraph is a collection of graph-based neuroimaging datasets that span multiple categories of demographics, men-
tal states and cognitive traits. The following provides an overview of these categories and their associated datasets.

The data is made available in accordance with the WU-Minn HCP Consortium Open Access Data Use
Terms (Step 4), which can be found at https://www.humanconnectome.org/study/hcp-young-adult/document/
wu-minn-hcp-consortium-open-access-data-use-terms.

Demographics category includes gender and age estimation. The gender attribute facilitates a binary classification with
the categories being male and female. Age is categorized into three distinct groups as in: 22-25, 26-30, and 31-35 years.
We introduce four datasets named: HCP-Gender, HCP-Age, DynHCP-Gender, and DynHCP-Age under this category.
The first two are static graph datasets while the last two are the corresponding dynamic graph datasets.

NEUROGRAPH: 1

https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms

NeuroGraph, Release 2.1.0

2 NEUROGRAPH:

CHAPTER
ONE

MENTAL STATES

The mental state decoding involves seven tasks: Emotion Processing, Gambling, Language, Motor, Relational Process-
ing, Social Cognition, and Working Memory. Each task is designed to help delineate a core set of functions relevant
to different facets of the relation between human brain, cognition and behavior. Under this category, we present two
datasets: HCP-Activity, a static representation, and DynHCP-Activity, its dynamic counterpart.

NeuroGraph, Release 2.1.0

4 Chapter 1. Mental States

CHAPTER
TWO

COGNITIVE TRAITS

The cognitive traits category of our dataset comprises two significant traits: working memory (List Sorting) and fluid
intelligence evaluation with PMAT24. Working memory refers to an individual’s capacity to temporarily hold and
manipulate information, a crucial aspect that influences higher cognitive functions such as reasoning, comprehension,
and learning. Fluid intelligence represents the ability to solve novel problems, independent of any knowledge from the
past. It demonstrates the capacity to analyze complex relationships, identify patterns, and derive solutions in dynamic
situations. The prediction of both these traits, quantified as continuous variables in our dataset, are treated as regres-
sion problem. We aim to predict the performance or scores related to these cognitive traits based on the functional
connectome graphs. We generate four datasets under cognitive traits: HCP Fluid Intelligence (HCP-FI), HCP Working
Memory (HCP-WM), DynHCP-FI and DynHCP-WM.

NeuroGraph, Release 2.1.0

6 Chapter 2. Cognitive Traits

CHAPTER
THREE

INSTALLATION

NeuroGraph is available for Python 3 and can be easily installed with pip

[pip install NeuroGraph J

NeuroGraph is developed on top of PyG and requires PyG to be installed. To install PyG, please follow the instructions
provided in the PyG documentation here.

https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html

NeuroGraph, Release 2.1.0

8 Chapter 3. Installation

CHAPTER
FOUR

INTRODUCTION BY EXAMPLE

We will briefly introduce the fundamental concepts of NeuroGraph through self-contained examples. We closely follow
the data representation format of PyG. Therefore, interested readers are referred to the PyG documentation for an
introduction to the graph machine learning and PyG’s data representation formats.

4.1 Loading Benchmark datasets

NeuroGraph provides two classes for loading static and dynamic benchmark datastes.

4.1.1 Loading Static Benchmarks

NeuroGraph utilizes the PyG InMemoryDataset class to facilitate the loading of datasets. this allows an easy-to-use
interface for applying graph machine learning pipelines. For example, the HCPGender benchmark can be loaded as
follows:

from NeuroGraph.datasets import NeuroGraphDataset

dataset = NeuroGraphDataset(root="data/", name= "HCPGender")
print(dataset.num_classes)

print(dataset.num_features)

4.1.2 Loading Dynamic Dataset
To efficiently store and utilize the dynamic datasets in PyG * Batch format, we provide the corresponding functionality.
Here is an example of loading the DynHCPGender dataset:

The dataset is a list of dynamic graphs represented in the PyG batch format, making it compatible with graph machine
learning pipelines.

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/

NeuroGraph, Release 2.1.0

10 Chapter 4. Introduction by Example

CHAPTER
FIVE

PREPROCESSING EXAMPLES

To bridge the gap betwee NeuroGraph and graph machine learning domains, NeuroGraph offers tools to easily pre-
process and construct graph-based neuroimaging datasets. Here, we demonstrate how to preprocess your own data to
construct functional connectomes and generate corresponding graphs-based representations.

The corresponding Adjacency matrix and PyG data objects can be created from the functional_connectome as follows.

from NeuroGraph import utils
adj = utils.construct_adj(fc, threshold= 5) # construct the adjacency matrix
data = utils.construct_data(fc, label= 1,threshold = 5) # construct PyG data object

We use correlation as node features while constructing data object from functional connectome.

The following is the source code for processing one fMRI scan with corresponding regressor using our preprocessing
pipeline.

from NeuroGraph import utils

import numpy as np

from nilearn.image import load_img

img = load_img("data/raw/1.nii.gz") # 1.nii.gz is fMRI scan

regs np.loadtxt("data/raw/1.txt") # 1.txt is the movement regressor

fmri = img.get_fdata()

fc = utils.preprocess(fmri, regs, n_rois= 100)

adj = utils.construct_adj(fc, threshold= 5) # construct the adjacency matrix

data = utils.construct_data(fc, label = 1,threshold = 5) # construct torch Data object

Our preprocessing pipeline consists of five steps and can also be applied seperately in steps.

from NeuroGraph import utils
import numpy as np
from nilearn.image import load_img

img = load_img("data/raw/1.nii.gz")

regs = np.loadtxt("data/raw/1.txt")

fmri = img.get_fdata()

parcells = utils.parcellation(fmri,n_rois = 100) ## this uses schaefer atlas by default
Y = utils.remove_drifts(parcells)

Y = utils.regress_head_motions(Y,regs)

fc = utils.construct_corr(Y)

adj = utils.construct_adj(fc, threshold= 5) # construct the adjacency matrix

data = utils.construct_data(fc, label = 1,threshold = 5)

11

NeuroGraph, Release 2.1.0

12 Chapter 5. Preprocessing Examples

CHAPTER
SIX

PREPROCESSING HUMAN CONNECTOME PROJECT (HCP1200)
DATASET

NeuroGraph utilizes the HCP1200 dataset as a primary data source for exploring the dataset generation search space
and constructing benchmarks. The HCP1200 dataset can be accessed from the HCP website by accepting the data usage
terms. Additionally, the dataset is also available on an AWS S3 bucket, which can be accessed once authorization has
been obtained from HCP. In this section, we provide various functions that allow you to crawl and preprocess the HCP
datasets, enabling the construction of graph-based neuroimaging datasets. These functions streamline the process of
obtaining and preparing the data for further analysis and modeling.

6.1 Download and preprocess static datasets

from NeuroGraph.preprocess import Brain_Connectome_Rest_Download
import boto3

root = "data/"

name = "HCPGender"
threshold = 5
path_to_data = "data/raw/HCPGender" # store the raw downloaded scans

n_rois = 100
n_jobs = 5 # this script runs in parallel and requires the number of jobs is an input

ACCESS_KEY '' # your connectomeDB credentials

SECRET_KEY = "'

s3 = boto3.client('s3', aws_access_key_ id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY)

this function requires both HCP_behavioral.csv and ids.pkl files under the root..
—directory. Both files have been provided and can be found under the data directory
rest_dataset = Brain_Connectome_Rest_Download(root,name,n_rois, threshold,path_to_data,n_
-, jobs,s3)

The provided function facilitates the download of data from the AWS S3 bucket, performs preprocessing steps, and
generates a graph-based dataset. It is important to note that the rest_dataset used in this function consists of four
labels: gender, age, working memory, and fluid intelligence. To create separate datasets based on these labels, the
following functionalities can be used.

from NeuroGraph import preprocess

rest_dataset = preprocess.Brain_Connectome_Rest_Download(root,name,n_rois, threshold,
—.path_to_data,n_jobs,s3)
gender_dataset = preprocess.Gender_Dataset(root, "HCPGender",rest_dataset)

(continues on next page)

13

https://www.humanconnectome.org/study/hcp-young-adult

NeuroGraph, Release 2.1.0

(continued from previous page)
age_dataset = preprocess.Age_Dataset(root, "HCPAge",rest_dataset)

wm_datast = preprocess.WM_Dataset(root, "HCPWM",rest_dataset)
fi_datast = preprocess.FI_Dataset(root, "HCPFI",rest_dataset)

To construct the State dataset, the following functionalities can be used.

from NeuroGraph import preprocess

state_dataset = preprocess.Brain_Connectome_State_Download(root, dataset_name,rois,..
—,threshold,path_to_data,n_jobs,s3)

If you have the data locally, then the following functionalities can be used to preprocess the data.

from NeuroGraph import preprocess

rest_dataset = preprocess.Brain_Connectome_Rest(root, name, n_rois, threshold, path_to_
—data, n_jobs)

Similarly, for constructing the State dataset, the following function can be used.

from NeuroGraph import preprocess

state_dataset = preprocess.Brain_Connectome_State(root, name, n_rois, threshold, path_to_
—.data, n_jobs)

6.2 Download and preprocess dynamic datasets

We also offer similar functionalities for constructing dynamic datasets. You can create a dynamic REST dataset from
the data stored locally as follows.

from NeuroGraph import preprocess

ngd = Dyn_Prep(fmri, regs, n_rois=100, window_size=50, stride=3, dynamic_length=None)
dataset = ngd.dataset

labels = ngd.labels

print(len(dataset),len(labels))

Here the dataset is a list containing dynamic graphs in the form of PyG Batch, which can be easily fed into graph
machine learning pipelines. The following examples demonstrate how a dynamic REST dataset can be downloaded
and preprocessed on the fly.

from NeuroGraph import preprocess

dyn_obj = preporcess.Dyn_Down_Prep(root, name,s3,n_rois = 100, threshold = 10, window_
—.size = 50,stride == 3, dynamic_length=150)
dataset = dyn_obj.data_dict

Dyn_Down_Prep class downloads and preprocess the rest dataset and provides a dictionary that contains a list of
dynamic graphs against each id. The dataset can be further prprocessed as follows to construct each benchmark.

14 Chapter 6. Preprocessing Human Connectome Project (HCP1200) Dataset

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

NeuroGraph, Release 2.1.0

from NeuroGraph import preprocess

dyn_obj = preporcess.Dyn_Down_Prep(root, name,s3,n_rois = 100, threshold = 10, window_
—.size = 50,stride == 3, dynamic_length=150)
dataset = dyn_obj.data_dict
gender_dataset, labels = [],[]
for k,v in dataset.items():
if v is None:
continue
1 =v[0].y
gender = int(1[0].item())
sub = []
for d in v:
new_data = Data(x = d.x, edge_index = d.edge_index, y = gender)
sub.append(new_data)
batch = Batch.from_data_list(sub)
gender_dataset.append(batch)
labels.append(gender)
print("gender dataset created with number of instances".format(len(gender_dataset),
< len(labels)))
new_dataset = {'labels':labels, "batches":gender_dataset}

age_dataset, labels = [],[]
for k,v in dataset.items():
if v is None:
continue
1 =v[0].y
age = int(1[1].item())
if age <=2: ### Ignoring subjects with age >=36
sub = []
for d in v:
new_data = Data(x = d.x, edge_index = d.edge_index, y = age)
sub.append (new_data)
batch = Batch. from_data_list(sub)
age_dataset.append(batch)
labels.append(gender)
print("Age dataset created with number of instances".format(len(age_dataset),..
—len(labels)))
new_dataset = {'labels':labels, "batches":age_dataset}

wm_dataset, labels = [],[]
for k,v in dataset.items():
if v is None:
continue
1 =v[0].y
wm = int(1[2].item(Q))
if wm is not None: ## there are some None which should be removed

sub = []
for d in v:
print(d)

new_data = Data(x = d.x, edge_index = d.edge_index, y = wm)
sub.append(new_data)

batch = Batch. from data_list(sub)
(continues on next page)

6.2. Download and preprocess dynamic datasets 15

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

NeuroGraph, Release 2.1.0

(continued from previous page)
wm_dataset.append(batch)
labels.append(gender)
print ("Working memory dataset created with number of instances".format(len(wm_
—dataset), len(labels)))
new_dataset = {'labels':1labels, "batches":wm_dataset}

fi_dataset, labels = [],[]
for k,v in dataset.items():
if v is None:
continue
1 =v[0].y
fi = int(1[3].item())
if not math.isnan(fi): ## there are some None which should be removed

sub = []
for d in v:
print(d)

new_data = Data(x = d.x, edge_index = d.edge_index, y = fi)
sub.append(new_data)
batch = Batch. from_data_list(sub)
fi_dataset.append(batch)
labels.append(gender)
print("Fluid intelligence dataset created with number of instances".format(len(fi_
—dataset), len(labels)))
new_dataset = {'labels':1labels, "batches":fi_dataset}

16 Chapter 6. Preprocessing Human Connectome Project (HCP1200) Dataset

CHAPTER
SEVEN

LOAD BENCHMARK DATASETS

class NeuroGraphDataset (root: str, name: str, transform: Callable | None = None, pre_transform: Callable |
None = None, pre_filter: Callable | None = None)

Bases: InMemoryDataset

The NeuroGraph benchmark datasets from the “NeuroGraph: Benchmarks for Graph Machine Learning in Brain
Connectomics” paper. NeuroGraphDataset holds a collection of five neuroimaging graph learning datasets
that span multiple categories of demographics, mental states, and cognitive traits. See the documentation and
the Github for more details.

Dataset #Graphs Task

HCPTask 7,443 Graph Classification
HCPGender 1,078 Graph Classification
HCPAge 1,065 Graph Classification
HCPFI 1,071 Graph Regression
HCPWM 1,078 Graph Regression
Args:
root (str): Root directory where the dataset should be saved. name (str): The name of the dataset (one of
"HCPGender",

"HCPTask", "HCPAge", "HCPFI", "HCPWM").

transform (callable, optional): A function/transform that takes in an
torch_geometric.data.Data object and returns a transformed version. The data object will be
transformed before every access. (default: None)

pre_transform (callable, optional): A function/transform that takes in
an torch_geometric.data.Data object and returns a transformed version. The data object will be
transformed before being saved to disk. (default: None)

pre_filter (callable, optional): A function that takes in an
torch_geometric.data.Data object and returns a boolean value, indicating whether the data object
should be included in the final dataset. (default: None)

download ()
Downloads the dataset to the self.raw_dir folder.

filenames = {'HCPAge': 'lzzks4472czy9f9vc8aikp7pdbknmtfe.zip', 'HCPFI':
'g2md9h9snh7 jh6eeay®2k1krIm4ido9£f.zip', 'HCPGender':
'réhlz2arm7yiy6v6981cv2nzq3bOmeax.zip', 'HCPTask':
'8wzz4yl7wpxg2stip7iybtmymnybwvma.zip', 'HCPWM':
'xtmpa6712£fidi94x6kevpsddf9skuoxy.zip'}

17

https://arxiv.org/abs/2306.06202
https://arxiv.org/abs/2306.06202
https://neurograph.readthedocs.io/en/latest/NeuroGraph.html
https://github.com/Anwar-Said/NeuroGraph

NeuroGraph, Release 2.1.0

process()
Processes the dataset to the self.processed_dir folder.

property processed_dir: str
property processed_file_names: str
The name of the files in the self.processed_dir folder that must be present in order to skip processing.
property raw_dir: str
property raw_file_names: str
The name of the files in the self.raw_dir folder that must be present in order to skip downloading.

url = 'https://vanderbilt.box.com/shared/static’'

class NeuroGraphDynamic (root, name)

Bases: object

Graph-based neuroimaging benchmark datasets, e.g., "DynHCPGender", "DynHCPAge", "DynHCPActivity",
"DynHCPWM", or "DynHCPFI"

Args:
root (str): Root directory where the dataset should be saved. name (str): The name of the dataset.
Returns:
list: A list of graphs in PyTorch Geometric (pyg) format. Each graph contains a list of dynamic graphs
batched in pyg batch.
download ()

filenames = {'DynHCPActivity': '2so3fnfgakeu6hktz32203nm2c8ocus7.zip', 'DynHCPAge':
'195f9teg4t4apn6klbhbc4ib4g9addtq.zip', 'DynHCPFI':
'un7w3ohb2mmyjqtlou2wm3g87yllfuuo.zip', 'DynHCPGender':
'mj0®z6unea34lfzlhkdwsinj7g22yohxn.zip', 'DynHCPWM':
'mxy8£q3ghm60q6h7uhnu8®pgvixs6xo02.zip'}

load_data()

url = 'https://vanderbilt.box.com/shared/static’

18

Chapter 7. Load Benchmark Datasets

CHAPTER
EIGHT

NEUROGRAPH PREPROCESSING FUNCTIONALITIES

class Age_Dataset (root, dataset_name, dataset, transform=None, pre_transform=None, pre_filter=None)
Bases: InMemoryDataset
process()
Processes the dataset to the self.processed_dir folder.
property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class Brain_Connectome_Rest (root, name, n_rois, threshold, path_to_data, n_jobs, transform=None,
pre_transform=None, pre_filter=None)

Bases: InMemoryDataset
construct_adj_postive_perc(corr)

construct adjacency matrix from the given correlation matrix and threshold
extract_£from_3d_no (volume, finri)

Extract time-series data from a 3d atlas with non-overlapping ROIs.

Inputs:
path_to_atlas = ‘/path/to/atlas.nii.gz’ path_to_fMRI = ‘/path/to/fmri.nii.gz’

Output:
returns extracted time series # volumes x # ROIs

get_data_obj (iid, behavioral_data, path_to_data, volume)
process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class Brain_Connectome_Rest_Download(root, name, n_rois, threshold, path_to_data, n_jobs, s3,
transform=None, pre_transform=None, pre_filter=None)

Bases: InMemoryDataset
construct_Adj_postive_perc(corr)
extract_from_3d_no (volume, fimri)

Extract time-series data from a 3d atlas with non-overlapping ROIs.

Inputs:
path_to_atlas = ‘/path/to/atlas.nii.gz’ path_to_fMRI = ‘/path/to/fmri.nii.gz’

19

NeuroGraph, Release 2.1.0

Output:
returns extracted time series # volumes x # ROIs

get_data_obj (iid, behavioral_data, BUCKET _NAME, volume)
process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class Brain_Connectome_Task (root, dataset_name, n_rois, threshold, path_to_data, n_jobs, transform=None,

pre_transform=None, pre_filter=None)

Bases: InMemoryDataset

construct_adj_postive_perc(corr)

construct adjacency matrix from the given correlation matrix and threshold

extract_from_3d_no (volume, fmri)
Extract time-series data from a 3d atlas with non-overlapping ROIs.

Inputs:
path_to_atlas = ‘/path/to/atlas.nii.gz’ path_to_fMRI = ‘/path/to/fmri.nii.gz’

Output:
returns extracted time series # volumes x # ROIs

get_data_obj_task(iid, target_path, volume)
process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class Brain_Connectome_Task_Download(root, dataset_name, n_rois, threshold, path_to_data, n_jobs, s3,

transform=None, pre_transform=None, pre_filter=None)

Bases: InMemoryDataset
construct_Adj_postive_perc(corr)
extract_£from_3d_no (volume, fimri)
Extract time-series data from a 3d atlas with non-overlapping ROIs.

Inputs:
path_to_atlas = ‘/path/to/atlas.nii.gz’ path_to_fMRI = ‘/path/to/fmri.nii.gz’

Output:
returns extracted time series # volumes x # ROIs

get_data_obj_task(iid, BUCKET _NAME, volume)
process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

20

Chapter 8. NeuroGraph Preprocessing Functionalities

NeuroGraph, Release 2.1.0

class Dyn_Down_Prep (root, name, s3, n_rois=100, threshold=10, window_size=50, stride=3,
dynamic_length=150)

Bases: object

construct_Adj_postive_perc(corr)
construct_dataset()

extract_£from_3d_no (finri)
Extract time-series data from a 3d atlas with non-overlapping ROIs.
Inputs:
path_to_atlas = ‘/path/to/atlas.nii.gz’ path_to_fMRI = ‘/path/to/fmri.nii.gz’
Output:
returns extracted time series # volumes x # ROIs

get_dynamic_data_object (iid)
process_dynamic_£fc (timeseries, y, sampling_init=None, self loop=True)

Dyn_Prep (finri, regs, n_rois=100, window_size=50, stride=3, dynamic_length=None)

Preprocess fMRI data using NeuroGraph preprocessing pipeline and construct dynamic functional connectome
matrices

Args:

fmri (numpy array): fmri image regs (numpy array): regressor array rois (int): {100, 200, 300, 400, 500, 600,
700, 800, 900, 1000}, optional, Number of regions of interest. Default=100. window_size (int) : the length of
the window, default = 50 stride (int): default: 3 dynamic_length (int) : length of the timeseries to be considered
for dynamic graphs. For memory and compution efficiency, we set dynamic length = 50, default = None, if None,
consider the whole timeseries object

class FI_Dataset (root, dataset_name, dataset, transform=None, pre_transform=None, pre_filter=None)

Bases: InMemoryDataset

process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class Gender_Dataset (root, dataset_name, dataset, transform=None, pre_transform=None, pre_filter=None)
Bases: InMemoryDataset

process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

class WM_Dataset (root, dataset_name, dataset, transform=None, pre_transform=None, pre_filter=None)
Bases: InMemoryDataset

process()
Processes the dataset to the self.processed_dir folder.

property processed_file_names
The name of the files in the self.processed_dir folder that must be present in order to skip processing.

21

NeuroGraph, Release 2.1.0

22

Chapter 8. NeuroGraph Preprocessing Functionalities

CHAPTER
NINE

NEUROGRAPH UTILITIES

construct_adj (corr, threshold=5)

create adjacency matrix from functional connectome matrix

Args:

corr (n X n numpy matrix): functional connectome matrix
Threshold (int (1- 100)): threshold for controling graph density.

the more higher the threshold, the more denser the graph. default: 5

construct_corr(m)

This function construct correlation matrix from the preprocessed fmri matrix Args.
m (numpy array): a preprocessed numpy matrix return: correlation matrix

construct_data(corr, label, threshold=5)

create pyg data object from functional connectome matrix. We use correlation as node features Args:
corr (n X n numpy matrix): functional connectome matrix
Threshold (int (1- 100)): threshold for controling graph density.
the more higher the threshold, the more denser the graph. default: 5
parcellation(finri, n_rois=1000)
Prepfrom brain parcellation
Args:

fmri (numpy array): fmri image rois (int): {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, optional, Number
of regions of interest. Default=1000.

preprocess (finri, regs, n_rois=1000)
Preprocess fMRI data using NeuroGraph preprocessing pipeline
Args:
fmri (numpy array): fmri image regs (numpy array): regressor array rois (int): {100, 200, 300, 400, 500, 600,
700, 800, 900, 1000}, optional, Number of regions of interest. Default=1000.
regress_head_motions (Y, regs)

This function regress out six rigid- body head motion parameters, along with their derivatives, from the fMRI
data

Args: Y (numpy array)): fmri image regs (numpy array): movement regressor

23

NeuroGraph, Release 2.1.0

remove_drifts(Y)

This function removes the scanner drifts in the fMRI signals that arise from instrumental factors. By eliminating
these trends, we enhance the signal-to-noise ratio and increase the sensitivity to neural activity.

24 Chapter 9. NeuroGraph Utilities

CHAPTER
TEN

INDICES AND TABLES

* genindex
* modindex

¢ search

25

NeuroGraph, Release 2.1.0

26

Chapter 10. Indices and tables

n

NeuroGraph.datasets, 17
NeuroGraph.preprocess, 19
NeuroGraph.utils, 23

PYTHON MODULE INDEX

27

NeuroGraph, Release 2.1.0

28

Python Module Index

A

Age_Dataset (class in NeuroGraph.preprocess), 19

B

Brain_Connectome_Rest
Graph.preprocess), 19

Brain_Connectome_Rest_Download (class in Neuro-
Graph.preprocess), 19

Brain_Connectome_Task
Graph.preprocess), 20

Brain_Connectome_Task_Download (class in Neuro-
Graph.preprocess), 20

(class in Neuro-

(class in Neuro-

C

construct_adj () (in module NeuroGraph.utils), 23

construct_adj_postive_perc()
(Brain_Connectome_Rest method), 19

construct_Adj_postive_perc()
(Brain_Connectome_Rest_Download method),
19

construct_adj_postive_perc()
(Brain_Connectome_Task method), 20

construct_Adj_postive_perc()
(Brain_Connectome_Task_Download method),

20
construct_Adj_postive_perc() (Dyn_Down_Prep
method), 21

construct_corr() (in module NeuroGraph.utils), 23
construct_data() (in module NeuroGraph.utils), 23
construct_dataset() (Dyn_Down_Prep method), 21

D

download() (NeuroGraphDataset method), 17
download() (NeuroGraphDynamic method), 18
Dyn_Down_Prep (class in NeuroGraph.preprocess), 20
Dyn_Prep() (in module NeuroGraph.preprocess), 21

E

extract_from_3d_no()
method), 19

(Brain_Connectome_Rest

INDEX

extract_from_3d_no()
(Brain_Connectome_Rest_Download method),
19

extract_from_3d_no()
method), 20

extract_from_3d_no()
(Brain_Connectome_Task_Download method),
20

extract_from_3d_no() (Dyn_Down_Prep method), 21

F

FI_Dataset (class in NeuroGraph.preprocess), 21
filenames (NeuroGraphDataset attribute), 17
filenames (NeuroGraphDynamic attribute), 18

G

Gender_Dataset (class in NeuroGraph.preprocess), 21

get_data_obj () (Brain_Connectome_Rest method), 19

get_data_obj() (Brain_Connectome_Rest_Download
method), 20

get_data_obj_task()
method), 20

get_data_obj_task()
(Brain_Connectome_Task_Download method),
20

get_dynamic_data_object()
method), 21

(Brain_Connectome_Task

(Brain_Connectome_Task

(Dyn_Down_Prep

L

load_data() (NeuroGraphDynamic method), 18

M

module
NeuroGraph.datasets, 17
NeuroGraph.preprocess, 19
NeuroGraph.utils, 23

N

NeuroGraph.datasets
module, 17
NeuroGraph.preprocess

29

NeuroGraph, Release 2.1.0

module, 19
NeuroGraph.utils

module, 23
NeuroGraphDataset (class in NeuroGraph.datasets), 17
NeuroGraphDynamic (class in NeuroGraph.datasets), 18

P

parcellation() (in module NeuroGraph.utils), 23

preprocess() (in module NeuroGraph.utils), 23

process() (Age_Dataset method), 19

process() (Brain_Connectome_Rest method), 19

process() (Brain_Connectome_Rest_Download
method), 20

process() (Brain_Connectome_Task method), 20

process() (Brain_Connectome_Task_Download
method), 20

process() (FI_Dataset method), 21

process() (Gender_Dataset method), 21

process() (NeuroGraphDataset method), 18

process() (WM_Dataset method), 21

process_dynamic_£fc () (Dyn_Down_Prep method), 21

processed_dir (NeuroGraphDataset property), 18

processed_file_names (Age_Dataset property), 19

processed_file_names (Brain_Connectome_Rest
property), 19

processed_file_names
(Brain_Connectome_Rest_Download prop-
erty), 20

processed_file_names (Brain_Connectome_Task
property), 20

processed_file_names
(Brain_Connectome_Task_Download prop-
erty), 20

processed_file_names (FI_Dataset property), 21

processed_file_names (Gender_Dataset property), 21

processed_file_names (NeuroGraphDataset prop-
erty), 18

processed_file_names (WM_Dataset property), 21

R

raw_dir (NeuroGraphDataset property), 18

raw_file_names (NeuroGraphDataset property), 18

regress_head_motions() (in module Neuro-
Graph.utils), 23

remove_drifts() (in module NeuroGraph.utils), 23

U

url (NeuroGraphDataset attribute), 18
url (NeuroGraphDynamic attribute), 18

W

WM_Dataset (class in NeuroGraph.preprocess), 21

30 Index

	Mental States
	Cognitive Traits
	Installation
	Introduction by Example
	Loading Benchmark datasets
	Loading Static Benchmarks
	Loading Dynamic Dataset

	Preprocessing Examples
	Preprocessing Human Connectome Project (HCP1200) Dataset
	Download and preprocess static datasets
	Download and preprocess dynamic datasets

	Load Benchmark Datasets
	NeuroGraph Preprocessing Functionalities
	NeuroGraph Utilities
	Indices and tables
	Python Module Index
	Index

